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Abstract

A new algebraic multigrid (AMG) method is developed to replace a
fast, parallel direct solver used for the coarse-grid problem in a massively
parrallel (P > 10°) implementation of a multilevel method, resulting in
a dramatic improvement in overall efficiency. In addition to being sparse
and symmetric positive definite (SPD), these coarse-grid problems are
characterized by having few degrees of freedom per processor, n/P = O(1).
For the target processor counts, the coarse problem is large and a challenge
to solve efficiently. The AMG method developed aims to produce the most
efficient AMG hierarchy possible, without regard to setup costs, because the
target applications require the approximate solution of a single, unchanging
system hundreds of thousands of times within a single computation. The
thrust of the approach rests on proposed measures of quality for each
AMG component: coarsening, interpolation, and smoothing. Heuristic
procedures are developed for constructing near-optimum components in
turn, targeting approximations of the proposed theoretical quality measures.
Crucially, the measures do not reference those components yet to be
constructed. For example, the proposed measure of coarsening quality is
independent of both the interpolation and the smoother. Moreover, these
measures are grounded in theory; in particular a two-grid convergence
bound in terms of them is proven. Numerical results comparing optimized
AMG with a fast parallel direct solver intended for coarse problems show
efficiency gains up to nearly two orders of magnitude. While coarse-grid
problems motivated this research, the theory presented applies generally
and provides a framework for deriving AMG strategies for general SPD
systems.

1 Introduction

We consider the development of algebraic multigrid (AMG) methods for
highly parallel solution of sparse symmetric positive-definite (SPD) systems.



Our focus is on the development of independent quality metrics that allow
us to optimize the parallel solution process, without regard to setup costs.
Our intended application is solution of coarse-grid systems that arise in
distributed-memory implementations of multilevel Schwarz and multigrid
solvers, where one is faced with repeated (perhaps approximate) solutions
of systems that have distributed data and solutions and that have relatively
few (tens to hundreds) degrees of freedom per processor. Such systems
have been considered in the past (e.g., [4,/10]), and a review of the state of
the art as of 2001 is given in [13]. The present work differs from earlier
efforts in that it targets processor counts exceeding P = 10° and thus
requires O(n) or at most O(nlogn) complexity, given that n > P. While
the coarse-grid-solve problem provided the motivation for the current work,
the results presented here are more general and, we believe, provide a
rational framework for deriving AMG convergence strategies in the context
of SPD systems.

We view an AMG iteration as consisting of the three heuristically
chosen components: coarsening, interpolation weights, and smoother. The
efficiency of AMG depends on the cost per iteration and the convergence
rate. The components contribute more or less independently to the cost per
iteration, but they seem to interact in a complex way in determining the
convergence rate. We propose a technique for quantifying the “quality” of
each component in a way that has no “forward” dependencies; for example,
we quantify the coarsening quality without reference to interpolation or
smoother. In Section where we present these quality measures, we
discuss how making each quantity small (smaller being better) together
implies an efficient algorithm. In particular, we prove a convergence bound
involving these quantities.

Equipped with this theory, we constructed heuristic procedures for
each component, in each case targeting some computable approximation
to our theoretical quality. Our coarsening procedure in particular might
be of interest—it is a simple, inherently parallel procedure using the
concept of Gershgorin discs and requiring no special treatment of positive
off-diagonals. We forgo the “strength of connection” heuristic and the
corresponding strong connection threshold parameter.

We discuss connections with other literature as they arise, but we
provide a brief summary here. Our notion of coarsening quality, which
doesn’t involve the smoother/relaxation, nonetheless strongly resembles
Brandt’s idea of “compatible relaxation” [2]. It draws heavily from ideas
of Brannick and Zikatanov [3|, going back to a result by Demko, Moss, and
Smith [6]. Our interpolation quality appears in the analysis of Falgout,
Vassilevski, and Zikatanov [8] but not in the context of general smoothers.
Our convergence bound theorem is closely related to a theorem of the
same paper.

2 Convergence Theory

We begin by presenting a general AMG convergence theory for SPD sys-
tems, which provides the foundation for the independent quality measures
proposed in the next section.



2.1 Notation

We are interested in AMG as an iterative method for solving the linear
system
Ax = b,

with A a large, sparse, symmetric positive-definite (SPD) n X n matrix.
We define the two-level multigrid, or “two-grid,” iteration

x — Xit1 = Eig(x — xi) 1)
in terms of the two-grid error-propagation matrix
Ei = (I — BA)(I — PA.'P" A), (2)

where the coarse operator A. := PTAP. The iteration is determined by
the matrix B, defining the smoother, and by the n X n. prolongation or
interpolation matrix P. We are concerned only with the asymptotic conver-
gence rate of , equal to p(Eyg), the spectral radius of Eig. As a result,
our analysis also covers iterations with multiple pre- and postsmoothing
steps, such as that corresponding to

(I—MTA)™(I—PA'PTA)I - M TA)™2,

which may be cyclically permuted into a form matching 7 without affect-
ing eigenvalues. We prefer the form because it is general: invertibility
of B, symmetry of the “V-cycle,” and iteration by simple repetition are
all unnecessary constraints on the algorithm.

We restrict our attention to classical AMG, in which the coarse “C-
variables” are a subset of the original variables. Selecting this subset is
called coarsening. If we order the C-variables last, then A and P take on
the block forms

_ Ay Are _|w
amilr A b,

where we have introduced the interpolation weights W, which specify how
P interpolates the first ny = n — n. “F-variables” from the C-variables.
Note that, following Falgout and Vassilevski [7], other AMG methods can
often be cast in this classic form with the help of a change-of-basis matrix.

2.2 Hierarchical Decomposition

We introduce the two-level hierarchical basis as the columns of T" and
consider A transformed to this basis,

_ | w i | Ay Afe
R ]

where A
Afc = AffW + Afc.
Note that the particular choice of weights W = —A;flAfC, which is gener-

ally not sparse, gives A fe = O and renders the decomposition orthogonal.



Because of this well-known property these weights are often termed the
ideal weights. Of course, this orthogonal decomposition must involve the
Schur complement of Ay,

Sc = Acc - AcfA;flAfC
In fact, one can easily check that
Ac=PTAP =S, + A7 A} Ay,

so that A. reduces to the Schur complement when A je = O, as expected.
Moreover, from this last equation it follows immediately that for any
X € R,

2 2 2 -1 2
1Pxella = lIxellZ, = lIxells, + 1A% Agexell, - ®3)

The ideal weights thus minimize the energy norm of any prolongated vector
(only the second term depends on W, and it vanishes when A fe = 0).

We may also transform the other matrices we have defined to the
hierarchical basis.

P=T7'P= 0 , B:=T"'BT T = By B
1 Bcf Bcc

Ei = (I —BAYI — PA;'PTA) =T 'E,T

Note that Eig and Eyg are similar matrices and thus have identical spectra.

2.3 Orthogonal Decomposition

The hierarchical decomposition of the previous section is not orthogonal
except in the special case of the generally nonsparse ideal weights W =
—A;fl Ajc. Here we consider leaving the nonideal coarse basis alone and
instead orthogonalizing the F-variables against the coarse subspace. We
write this new basis, in hierarchical coordinates, as the columns of @, and
we consider A transformed to this basis,

._ I i AT in _ |Sf
N |

where

Sy = Ay — Ape AT A,
is the Schur complement of the coarse space operator A.. Note that this
construction mirrors that of the previous section for the ideal weights case.
As in the previous section, we may transform the other matrices also.

- 15 [O ~ . By B
P=Q 'P= B:=Q'BQ T = |2/ J
Q { ]] S B=QUBQT = |
o= (I — BAYI — PAZ' PTA) = Q' By
Again, we see that Fig, Etg, and Etg are all similar and have ide~ntical
spectra. In particular, the two-grid asymptotic convergence rate is p(Esg) =

P(Etg) = P(Etg)~



2.4 Effective Smoother Component

We now introduce our first convergence theorem, in which we isolate the
component of the smoother that affects the convergence. Since we have
introduced the transformations to hierarchical and orthogonal decomposi-
tions, the proof is trivial. First,

o 1ET R o Sy I
T | AR O

That is, the coarse-grid correction zeros the coarse component of the error
in the orthogonal decomposition. Next,

Fog = (I — BA) [I O}

_ |1 _[By B[Sy

L R A g
. I—~Bffo 0]

“| —ByS; O]

Evidently, the block By is important. Let us relate it back to the original
smoother matrix B. First, observe that

oI -w L[
e N ]

Since B :=T " 'BT~ T and B:=Q 'BQ", it follows that

- N T
By = Byy = [I —W] B [I —W] .

Note that [I —W} is simply the projection onto the F-variables associated
with the hierarchical decomposition. We have just proved the following
theorem, which says that only the By component of the smoother B
affects the asymptotic convergence.

Theorem 1. Of the n eigenvalues of Eig, nc are zero; the remaining ns
are eigenvalues of I — By Sy. That is,

A(Ety) = A(I — By Sy) U {0}, (5)

where A -

By=[1 -w]B[I -w]". (6)
Proof. The matrices Eig and Eig are similar, and A(Eig) = A(I — B S5)U
{0} by virtue of (). This result establishes (5)), while (6) has already
been established. O

We found this to be a surprising result, for it implies that any smoother
may be replaced by the “F-relaxation”

Bff
B+ { O]



without affecting the asymptotic convergence rate of the two-level iteration,
and we note that forming this F-relaxation is fairly trivial; no matrix
inverses are involved in @ We do not suggest doing this in practice, but
it does raise questions about what advantages a general smoother has over
an F-relaxation.

2.5 Convergence Bound

If the hierarchical decomposition is already orthogonal, because the weights
are the ideal W = —A;flAfc, then the transformation @ reduces to the
identity. In particular, in this case we have Sy = Ay. In the general case,
the hierarchical decomposition should be nearly orthogonal, and Sy will
approximately equal Af. To make this precise, we introduce an energy
norm of the difference F' of the weights W from the ideal,

Fi=W — (A5 Ag) = Ay Ay, (7)

11 [|[Fv| a
v = [|A}FAc ?||2 = sup ——
vzo |[vlla.

Using equation ({3)), we have that

2 2
2 up IV VI

<1
vzo  IVIE,

That is, v characterizes the spectral equivalence between A, and the Schur
complement S.. Lemma 2.1 of the two-level analysis of Falgout, Vassilevski,
and Zikatanov [8] identifies v as the cosine of the abstract angle between
the subspaces of the hierarchical decomposition. We have chosen the
notation «y to follow theirs. We are interested in the spectral equivalence
between Ay, the other diagonal block of A, and S, the other Schur
complement. The fact that their spectral equivalence is characterized by
exactly the same constant is a generic property of Schur complements. We
demonstrate it in our context in the following lemma.

Lemma 1. The eigenvalues of Alfflsf are real and bounded by
11— < AA4 Sp) <1
These bounds are tight: 1 —~? is an eigenvalue, as is 1 whenever ny > ne.

Proof. The definition of v gives bounds on the eigenvalues of A7'FT Ay F,
which are real.

Fv|? Fv|?
0 S inf || ||2Aff S /\(AglFTAffF) S sup % = 72
v#0 HVHAC v#£0 ||V||AC

The upper bound is tight, by definition. Cyclic permutations of matrix
products leave the spectrum invariant except for a change in the pres-
ence and/or multiplicity of the zero eigenvalue accounting for changes in
dimension. Hence,

0 < ANFA'FT Ay <4



Note that the dimension changed from n. to ny. If this is an increase
(ng > nc), the spectrum must include 0, making the lower bound tight. If
we use that F' := A;flAfc in the definition of Sy,

Sf = Aff — flch;l/l?C = Aff — AffFAc_lFTAff,

we see that
MNAG' Sp) = 1= NFA;'FT Agy),
and the result follows. O

We can use this result to remove the matrix Sy from the convergence
result of Theorem [I} resulting in an inequality involving 7. We will use
the following basic linear algebra fact.

Lemma 2. For all SPD matrices X and symmetric positive semi-definite
matrices A and B, all of the same size,

Amin(AX ™D Amin (X B) < AMAB) < Amax(AX 1) Amax (X B).

Proof. The second inequality is a consequence of the submultiplicative
property of the Euclidean matrix norm.

Amax(AB) = | BT AB? |l < | BEX ¥ |2 X 2 AX 5| X2 B3|,
= Amax(AX )| B2 X 2|3
= Amax(AX ™) Amax (X2 BX )
= Amax (AX ") Amax (X B)

The first inequality reduces to 0 < 0 if either A or B is singular. Otherwise,
we can apply the inequality just proved to A=! and B~ !:

Amax (BT AT € Amax(B7' X ™) Amax(XA™).
Inverting both sides then yields the first inequality. O
Theorem 2. If Bff is symmetric and
p(I = By Agr) < py < 1,

then
p(Eiy) < 1= (1—=~+*)(1 - py).

Proof. We have that
0<1—p; <A ByAg) <1+ ps. (8)
1.1 .
In particular, A7, By A7 is SPD, which implies that By is. Thus, we may

apply Lemma [2{ with A « Bff, X A;fl, and B < Sy, using the bounds
from Lemma (1] and equation to find that

(1= p)) (1 =7") S X(BysSy) <1+ py.
From Theorem M Eig) = MI — By Sy) U {0"}, so

—pr SMFig) < 1= (1= pg)(1=77).



Theorem [2]is closely related to Theorem 4.2 of the analysis by Falgout,
Vassilevski, and Zikatanov [8] mentioned when we introduced ~ earlier in
this section. That theorem is restricted to symmetrically paired pre- and
post-F-relaxations, which, in our notation, means matrices B of the form

MY+ MTT M AyMTT O

B o ol (9)

We used Theorem [1| to reduce the general case to an F-relaxation, whereas
Falgout, Vassilevski, and Zikatanov pursue a different line of analysis to
handle the general case, although a significant amount of the treatment
was unified. Also, for the matrix B of (), we have that 0 < A(I — By Ayr).
This is not generally the case when, for example, presmoothing is not
done; Theorem [2[ still applies in this circumstance. We hope that readers
familiar with the paper by Falgout, Vassilevski, and Zikatanov will benefit
from the different point of view taken in our treatment. We also mention
that the symmetry requirement of B ¢ may be dropped from Theorem
by applying the theorem to a symmetrized smoother, in which case the
spectral radius bound weakens to an energy norm bound.

3 Independent Quality Measures
Using the convergence theorem of the preceding section, we propose specific

quantifications of the “quality” of each component of the two-grid iteration,
as listed in Table [Il

Table 1: AMG Component Quality Measures
Component Quality Cost

—T T
Coarsening Kfi= n(lszz Ajf;foz) ne/n

”A]%fF’flC 2|2 nnz(W)

Smoother pr=p — By Ay) cost of applying B

Interpolation  ~:

F:=W—(-Aj*Ap),  By:=[ -W|B[I -w]"

For easy reference, we have repeated definitions and @ from the
previous section of the departure from the ideal weights F' and the pro-
jection of the smoother to an F-relaxation Bys. We have not introduced
the condition number 7 until just now; Dy denotes the diagonal part of
Ays in its definition. In all cases, smaller numbers in the table are better.
Before explaining the theoretical justification of the quality measures, we
highlight a few properties. First, the measures have no forward dependen-
cies. That is, k¢ is independent of the weights W and smoother B, while
v is independent of the smoother B. We also have p; independent of W
in the particular case of the smoother being an F-relaxation. Second, in
each row, the quality measure is in opposition to the cost indicator. For
example, changing some C-variables to F-variables obviously improves the



coarsening ratio but will generally increase k¢, since the new diagonally
scaled Ay will include the old as a submatrix.

The justification for v and py as quality measures is the convergence
bound of Theorem 2| p(Eis) < ps +~2 — psy?. When either v or p; is
made smaller, the convergence bound improves.

The justification of k¢ is that it is tied to whether a low-cost set of
interpolation weights and low-cost smoother can be found that are also
of high quality. In the case of the smoother, this should be clear: in
particular, when ky is small, a few steps of damped Jacobi iteration suffice
to make py small. In the case of the interpolation weights, the reason is
related. It is a result by Demko, Moss, and Smith [6] that the entries of
the inverse of a sparse matrix X decay exponentially,

_ VRX) -1
= VeE(X)+1’

for some constant c. We have used the notation used by Brannick and
Zikatanov [3], and contributed by Vassilevski, who recognized the relevance
of the result to AMG. The quantity |7 — j|¢ denotes the distance between
unknowns i and j in the adjacency graph of X and can also be characterized
as the smallest k for which [X¥];; is nonzero; the latter notion was used
in the original statement by Demko, Moss, and Smith [6]. There are
interesting connections of with iterative linear solution methods.
The quantity |i — j|¢ is also the number of Jacobi iterations before the
value b; affects x; when solving Xx = b. The constant ¢ appears in the
standard convergence theory of the conjugate gradient (CG) method. This
is not surprising given that the kth iteration of CG constructs an optimal
polynomial ao X + a1 X* + - - + ax X" approximating X 1.

Now consider the ideal weights W = —AJTfIA e for which v = 0. These
may be written

(XY < cgliile—t) (10)

_1 1 _1 1
—D 2 (D2 A Dy )T (D2 Age).

Because of the inverse appearing as the middle factor, these weights are

not sparse. However, if we use with X = D;f% A ffof%, this factor
has matrix entries decaying exponentially at a rate controlled by k. In
constructing a sparse approximation W to the ideal weights, we can think
of dropping those entries that are small enough that -, a measure of the
error made, remains below some value. Clearly, when the coarsening is
good and ky is small, the number of nonzeros nnz(W) required to achieve
a fixed 7 should also be small.

Our notion of coarsening quality bears a strong resemblance to Brandt’s
concept of coarsening by “compatible relaxation” [2]. Indeed, k¢ character-
izes the convergence rate of optimally damped Jacobi on the F-variables.
However, we do not assume a smoother of this type; rather, our notion of
coarsening quality is independent of the smoother. It was in the context
of compatible relaxation that Brannick and Zikatanov [3] brought up the
result of Demko, Moss, and Smith [6], and indeed they argue that the
conditioning of Ay and the convergence rate of compatible relaxation are
correlated. However, the smoother is involved neither in the ideal weights



nor in the theoretical measure « of the quality of given nonideal weights,
and for this reason we abandoned the compatible relaxation philosophy
tying the coarsening quality to the smoother.

We have already remarked that our quantity v is not new and is
important in the context of the hierarchical basis method. It is perhaps
the particular projection of the smoother to an F-relaxation, theoretically
justified by Theorem [} that makes py novel-—although this projection is
just the one associated with the hierarchical decomposition. We also note
that py is itself a compatible relaxation convergence rate, although we use
it to characterize smoother quality and not coarsening quality, as unlike
k¢ it has no bearing on the sparsity of the interpolation weights.

4 Component Heuristics

In this section we present the heuristic procedures we developed to construct
each component, guided by the theoretical quality measures. In each
case, the heuristic procedure has a free parameter, a target value for the
corresponding quality measure, that can be used to adjust the balance
between cost and quality. The lack of forward dependencies in the measures
is crucial here, because we can construct each component in order, without
worrying about the effect of the components that have yet to be constructed.

4.1 Coarsening

Our coarsening procedure has a simple theoretical grounding. Let X :=
1 _1
I —Dy?AyDy?, so that kg = k(I — X). Notice that the diagonal of
X consists of all zeros. Hence, we may write the Gershgorin disc radii
associated with X as
T = eZT|X|17

where the absolute value of X is taken entrywise, 1 denotes the vector of
all ones, and e; denotes the ith column of the identity matrix. Because
the discs are all centered at 0, we have the bound

< 1+ Tmax

h max < 1, 11
Klf*l*'rmax when r (11)

where Tmax 1= max; r;. This leads us to the following simple procedure,
with R a given parameter:

1. Start with no C-variables.
2. Change those F-variables with locally maximal r; to C-variables.

3. Recompute the remaining 7;; go back to previous step unless rmax <
R.

By “locally maximal” in step 2, we mean larger than neighbors in the
adjacency graph. In the notation of the previous section we say r; is locally
maximal if 7; > r; whenever |i — j|¢ = 1. We resolve ties by referring to
the arbitrary ordering of unknowns.

We highlight some features of this simple algorithm. First, positive
off-diagonals pose no difficulty and require no special treatment. The

10



Figure 1: Algebraic coarsening of 9-pt Laplacian on Chebyshev mesh

matrix X resembles the “strength of connection” heuristic, but we don’t
use it to classify connections as one of “strong” or “weak.” The disc
radius r; resembles the “number of strong connections” heuristic but is
not integral. The procedure is inherently parallel and resembles the CLJP
coarsening procedure of Cleary et al. ; but because r; is not integral,
we do not need to add a random number to it to create local maxima
(although that’s a possible strategy for resolving ties). Most important,
the confidence in our algorithm comes from the bound it provides on
our theoretical quality measure.

In Figure[I] we show the coarsening obtained by this method for a 9-pt
Laplacian on a 15 x 15 grid located at Chebyshev nodal coordinates in both
directions. The grid exhibits strong anisotropy toward the boundaries.
Note that the algebraic coarsening procedure correctly semi-coarsens where
required, in the appropriate direction. In this example, we used the
maximum Gershgorin disc radius R = 0.9, which provides the bound
Ky < 19; this coarsening achieves x; = 3.6.

4.2 Interpolation

We divide the problem of constructing the interpolation weights W into two
subproblems: (1) finding the support, or sparsity pattern or skeleton, of
W and (2) finding the numerical entries given the support. Our procedure
expands the support of W iteratively, at each iteration solving subproblem
(2). As such, we look at subproblem (2) first.

4.2.1 Numerical Weights
Ideally, for a fixed support, we would like to choose the entries of W in

L1
order to minimize the quality measure v := [[AfFA. *||2. A tractable

11



substitute problem is instead to minimize the Frobenius norm HA%fFDHF,
for some diagonal matrix D. The matrix D does not affect the minimizer,
and moreover this is equivalent to minimizing the trace norm tr(P* AP).
This energy-minimizing approach was originally suggested by Wan, Chan,
and Smith [14]; see also the article by Xu and Zikatanov [15]. Simply
stated, with the sparsity pattern fixed in advance, the weights W are
chosen to

minimize tr(P”AP) subject to Wu = —A;flAfCu, (12)

where u is a near-null space vector specified at the C-variables only. For the
discretized Laplace operator, as in our application, the appropriate choice
is u = 1. Note that the small singular values of A, can dominate the norm
~ but that we lose this information in the Frobenius norm approximation.
Hence, the constraint, which ensures that one near-nullspace vector is
interpolated ideally, is crucial. For problems of interest, this is sufficient
to ensure that all singular vectors corresponding to small singular values
are interpolated well enough so that « remains small.

We find it fascinating that the vector of Lagrange multipliers A for
is governed by a standard overlapping additive Schwarz preconditioner
for Ay, as remarked by Brannick and Zikatanov [3|. If we let R; be the
matrix consisting of rows of the ny x ny identity matrix that restricts to
the support of column i of W and let

X, := R} (RiAy R ) 'R;,
then the solution to is given by
We; = Xi(—Agcei +uiX),

where

XX=-A Apeu = > wiXi(-Apee:), X =) uiX;. (13)
i=1

=1

For details of this solution, we refer the reader to the references given
above. We have introduced only the straightforward generalization of
letting u be different from 1 (and the astute reader will have noticed that
X becomes some sort of weighted overlapping Schwarz preconditioner in
that circumstance). One must be careful about ensuring that X is not
singular, as can happen when some of the u; are zero or the support sets
are too small. In that circumstance, the remedy is to take A\; = 0 wherever
Xii = 0 and solve only for the other ;.

In practice, we compute —A;fIA feu by the Jacobi preconditioned CG
method, which has a convergence rate controlled by xy. Because the
coarsening ensured that «7 is small, convergence is very fast. We also use
the preconditioned CG to solve , observing that, as X is a standard
preconditioner for Ay, symmetrically Ags is a good preconditioner for X.
We go one step further with a diagonal scaling D chosen so that DAz X,
and hence XAz D, has ones along the diagonal. We use the symmetric

12



preconditioner

1 _ . - - 2 T T
S(DAg + Ay D)~ X ', D:=diag(d;"), d;j:=) uie; R Rie;.
i=1
(14)
Again convergence is very fast because, diagonally scaled, Ay is well-
conditioned to begin with. In practice, a typical iteration count to compute
A to full machine precision is 15.

4.2.2 Interpolation Support

To determine the optimal support for W, we again appeal to an approxima-
tion of the theoretical quality measure v. Here we use the approximation

1. L.
Y= ||Aff2 A A |2 =~ Hfo2 ApeDe |2,

where Dy and D, are the diagonal parts of Aj and A. and where the
reader will recall Aj. := AW + Ay = Ay F. We use a bound on the
2-norm given by Nikiforov [11],

Theorem 3 (Nikiforov [11]). For all m X n complex matrices A, and
integers r > 0, p > 1,

WP
A < max ———,  w:=(A]AI")1,
2 i,w ™ 20 w'"

i

where the absolute value is taken entrywise, 1 denotes the vector of all
ones, and A® denotes the conjugate transpose.

We apply this bound by taking

1.
R:=[D* ApD:Y, w' = (RRT)"1, ¢ = \/wf)/wgl),
so that

_1
2

v = Hfo AfCD;1||2 < Crmax, Cmax = mMmax ¢;.

1<i<ne

This leads to the following simple procedure for determining the support
of W, given a target value 7ygoa1 0f the weights quality:

Start with an empty skeleton for W.

Recompute the entries in W for the current skeleton by solving ((12]).
Recompute Afc, De, R, w, w® and c.

If cmax < Ygoal, StOP.

AR .

Otherwise, for each column ¢ of W such that ¢; > (1 — €)7ygoal, add
to the skeleton of W the entry corresponding to the largest value in
|R|e;, and return to step 2.

In step 5, we take e = 0.01. Before discussing the parameter € and the
complications caused by the constraint in the minimization problem of
step 2, we highlight a few features of this procedure. At most one nonzero
per column is added per iteration. In step 5, we use ¢; as a heuristic

13



indication of when the support of column i is insufficient. The idea is to
add nonzeros only to those columns that need them. Compared to a simple
drop tolerance, in which the decision for when the support of a column
is sufficient is made independently from other columns, the heuristic ¢;
includes far more context. As a result, we found in practice that the above
procedure was far more robust, achieving values of 7 closer to the target
Ygoal, and also far more efficient, producing much lower nnz(W) for a given
~. For our application, setup time is immaterial, making the implications
of increased complication and cost during setup worthwhile.

In practice, we start not with an empty skeleton but rather a minimal
skeleton (one nonzero per row), such that it is possible to satisfy the
constraint Wu = 7A‘;J¢-1Afcu. In step 2, we do not attempt to solve
for the Lagrange multipliers exactly but simply use the approximate
inverse once. Without the constraint, it would be the case that
R;; = 0 wherever the skeleton of W has an entry. With the constraint
present, this is no longer true. If the largest value of R happens to occur
where W already has an entry, then in step 5 the procedure attempts to
add an already present entry to W. We remedy this situation by treating
any row where this occurs as having insufficient support to handle the
constraint. We find the largest value of R in any such row and add the
corresponding entry to W, constraining the search to give only new entries
in W.

We originally used € = 0 in step 5 but noticed that the algorithm would
typically quickly finish all but one or two columns. These last columns
would have values of ¢; just slightly above yg0a1 and converging very slowly
t0 Ygoal as nonzeros are added. Taking € = 0.01 appears to solve this
problem, allowing the iteration to stop before the convergence stalls.

4.3 Smoother

If the smoother is an F-relaxation, that is, if B takes the form

_ | B#
s=|" ).

then in this case B ¢t = Bys. Thus, an obvious approach to minimizing
ps = p(I— B Ags) is to use an F-relaxation with By chosen as a suitable
preconditioner for Ays.

Note that the restriction to F-relaxations is not in itself limiting in
that it is still possible to achieve arbitrarily small two-grid convergence
rates. In particular, from Theorem [I] we see that the impractical choice
By = S;l results in a direct method with EZ, = O. Of course, the matrix
Sy involves Az and is not available in practice. The approach described
above corresponds to using Ay as a surrogate for Sy. Recall that the two
matrices are spectrally equivalent by Lemma

F-relaxations have at least one big advantage over general smoothers.
Any standard Krylov subspace method may be used to accelerate an F-
relaxation and reliably lower p(I — By Ayg). In contrast, it is far from
clear how to use Krylov subspace methods to improve the smoothing
properties of a general smoother. Adams et al. [1] investigated the use
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of Chebyshev polynomials in multigrid smoothers; they use an ad hoc
smallest eigenvalue parameter to ensure the polynomial does not target the
slowly decaying smooth modes. We also note that combining all smoothing
steps under one Krylov subspace iteration, making the overall multigrid
iteration nonsymmetric, is generally able to achieve lower p; than separate,
symmetric pre- and postsmoothing stages.

Our choice is to do postsmoothing only, using a diagonal sparse approx-
imate inverse (SAI) preconditioner for Ay, accelerated by the Chebyshev
semi-iterative method. The nonsymmetry is not an issue for our appli-
cation. We choose the number of iterations such that py ~ ~% and the
terms in the convergence bound are approximately balanced. The use of
SAI preconditioners as multigrid smoothers was suggested by Tang and
Wan [12]. Diagonal SAI is an easily computable alternative to Jacobi and
is optimal in a certain Frobenius norm. We opted to use Chebyshev over
conjugate gradient iteration so that the full multigrid iteration remains
linear, and also to avoid the need for global inner products.

5 Numerical Results

We present two applications of our AMG approach, both taken from
large-eddy simulations of turbulent fluid flow in a reactor core [9]. The
spectral element method (SEM) Navier-Stokes code Nek5000 used for these
simulations requires the solution of a global “coarse” Poisson solve for the
pressure field, as part of the pressure solver. Here “coarse” means that the
problem has been reduced to bilinear elements, representing a reduction
in the number of unknowns by approximately a factor of N3, where N is
the polynomial order (e.g., N =7 or N = 11). For the large problem sizes
being encountered, the fast parallel direct solver |13] used for this purpose
was becoming the computational bottleneck. This situation motivated the
work on AMG reported here, which was used as a replacement.

First we consider the mesh of Figure 2] which is a single 2D slice from
a 7-pin reactor geometry. This mesh was imported into Matlab, and test
matrix A was constructed by using a standard FEM discretization of the
Laplacian operator on a 9-point stencil. This toy problem, comprising 1,422
unknowns, provided a test case for the AMG heuristics presented in the
previous section, which were implemented in Matlab. In Table [2| we report
relevant quantities for two hierarchies. The first was constructed for an
overall target convergence rate of piarget = 0.3, the second for prarget = 0.05.
The full hierarchy of algebraic grids for the first case is displayed in Figure[2]
with nodes at each level corresponding to C-variables rendered larger and
red, and nodes corresponding to F-variables smaller and blue. In each
level, m gives the number of Chebyshev iterations performed, where ps m—1
is the convergence rate of the diagonal preconditioner on its own. The
column p(FEmg) records the full multigrid convergence rate, not just the
two-grid rate. The final column, nnz(W)/n., records the average number
of nonzeros per column in the interpolation weights W. Note that in each
case, the AMG heuristics constructed a method with a convergence rate
close to the target. Also note that the more accurate hierarchy required
more nonzeros in W and more smoothing steps, reflecting the trade-off
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Table 2: AMG Hierarchies for 2D Example
(a) Ptarget — 0.3, Ytarget = 0.4

Level noone/n pPrm=1 M ¥ p(Emg) "nfl(cw)
1 1422  0.42 049 2 0.34 0.31 3.6
2 594  0.30 0.55 3 0.39 0.30 7.1
3 178  0.27 0.70 3 0.44 0.26 6.3
4 48  0.27 072 3 0.34 0.20 6.3
) 13 0.38 0.59 3 0.20 0.16 4.2
6 5 0.20 0.67 3 0 0.11 4.0
(b) Ptarget = 0057 Ytarget = 0.16
Level none/n ppm=1 m v p(Emg) %(CW)
1 1422 042 049 4 0.17 0.062 5.6
2 594  0.29 0.61 5 0.20 0.057 10.4
3 173 0.28 0.70 5 0.17 0.047 8.9
4 48  0.25 0.72 6 0.12 0.030 9.8
5 12 0.25 0.73 6 0 0.014 9.0
6 3  0.33 044 4 0 0.006 2.0

between cost and quality.

Next we consider a 3D problem with 417,600 unknowns. This was the
“coarse” problem from a Nek5000 run on a 19-pin geometry with an original
problem size of 120 million [9]. The matrix for the coarse problem was
processed off-line in Matlab to generate the AMG hierarchy. This data
was then read in and used by the AMG solver of Nek5000, implemented in
C using MPI. We report some properties of this hierarchy in Table 3] The
“?” symbols in the v column reflect the fact that our explicit method of
computing this quantity was not viable beyond a few thousand unknowns.
We include an additional column in this table, the average number of
nonzeros in a column of Aff. Here the matrix A ff, used in the Chebyshev
semi-iteration for the residual update, is formed by dropping small entries
in Agr. Robust bounds are used to ensure the damage to py is small. This
technique was used to combat the stencil growth in AMG methods, which,
as Table shows, our method does not escape. The actual convergence rate
achieved, 0.67, was small enough so that the iteration count in Nek5000
was unaffected when the direct solver was replaced by the approximate
AMG solver.

In Table 4] we list run times on the IBM BG/P at Argonne National
Laboratory for Nek5000 that were reported in [9] for the 19-pin geometry
with 120M unknowns. Here P is the number of processors and n/P is the
average number of unknowns per processor. The “Total” column lists the
overall time of the Nek5000 run, while the “Solver” column lists the time
spent in the “coarse” solver, the component replaced with the approximate
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Table 3: 3D Application Hierarchy; piarg = 0.5, Ytarg = 0.54

nnz(W nnz(A
p(Eumg) W) (Ag)

Level n NN Prm=1 M ~ o o
1 417600 0.36 0.80 3 ? 0.67 8.3 9.4
2 151248 0.44 0.61 2 ? 0.63 7.9 22.0
3 66887 0.43 0.59 2 ? 0.60 8.8 30.8
4 28862  0.33 0.62 2 ? 0.57 12.8 41.5
5 9471 0.22 0.68 3 ? 0.55 21.4 32.8
6 2116  0.18 0.67 2 0.42 0.51 36.4 86.6
7 390 0.20 0.60 2 042 0.48 35.8 53.8
8 79  0.16 0.72 3 0.61 0.46 33.3 43.8
9 13 0.23 0.62 2 0.39 0.35 9.3 10.0
10 3 0.33 0.44 2 0 0.11 2.0 2.0

Table 4: BG/P Run Times (seconds)
P n/P Method Solver Total

4096 102  direct 1180 1994
4096 102 AMG 1 192 1112
4096 102 AMG 2 25 846
8192 51 AMG 2 22 460
16384 25 AMG 2 20 266

AMG solver reported on in this paper. In the first row, the run used the
original direct solver. The runs for the remaining rows used two variant
implementations of AMG, using the hierarchy summarized in Table

Note that even on the finest level, there are only 100 unknowns per
processor. The direct solver does not scale to these problem sizes and
takes the bulk of the run time. The second AMG solver gives a 47-fold
improvement. In considering this remarkable figure, one must keep in
mind that many AMG iterations would be required to match the accuracy
of the direct solve. For this application, however, only the accuracy of one
iteration is required, and all of the extra accuracy provided by the direct
solve is wasted. Almost all of the time in the AMG solver is spent on
communication, which occurs when matrix vector products are evaluated
during the multigrid iteration. The implementation uses a stand-alone
general-purpose communication kernel for this task. As reported in [9], this
kernel had to be rewritten in order to evaluate the AMG communication
patterns efficiently. For each communication pattern, the kernel used in
the “AMG 1” run selected between using standard pairwise exchanges
and using an all_reduce(), which is implemented in hardware on the
BG/P. The kernel of the “AMG 2” run also could choose a crystal-router
based implementation (which has the feature of requiring maximum log, P
messages). See [9] for details. Note that this last optimization resulted in
a 7-fold improvement.
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6 Conclusion

We have presented an AMG algorithm developed to replace a direct solver
used as the “global coarse solve” in an application. Because this global
coarse solver is invoked possibly many hundreds of thousands of times in
a run, and for the same matrix, it made sense to consider using a possibly
expensive setup procedure to find the absolute “best” AMG components—
the best coarsening, interpolation, and smoother at each level. While
it is not difficult to estimate the cost of each component, the “quality”
of each is harder to isolate. The overall convergence rate, for example,
depends in a complicated way on all of the components. We drew heavily
on the literature to synthesize an understanding of the theory of AMG
that allowed each component to be isolated, that is, characterized and
able to be optimized independently from the others.

The perspective of AMG theory we presented may be summarized
as follows. The convergence theory of the two-grid iteration boils down
to how well the projection Bj; of the smoother, B, onto the F-variables
approximates ijl, the inverse of the Schur complement of the coarse
operator A.. Indeed, using S;l as an F-relaxation results in a direct
method (a Schur complement decomposition). Of course, this is completely
impractical, because even forming Sy involves AZ1. The next step then is
to characterize the circumstances in which a practical approximation to
S;l may be found. A first answer is that Sy will equal Az when we choose
Ac to be S¢, the Schur complement of Ag. This characterizes the ideal
weights. Unfortunately, not being sparse, these are impractical. However,
if they are nearly sparse, as happens when Ay is well-conditioned modulo
diagonal scaling, we may simply use a sparse approximation. When done
in a controlled way, the resulting Sy will still approximately equal Ags.
Hence our particular characterizations of the AMG components:

e Good coarsening amounts to finding some large submatrix Ay, well-
conditioned modulo diagonal scaling.

e Good interpolation amounts to finding a sparse coarse basis nearly
A-orthogonal to the space of F-variables.

e Good smoothing amounts to finding an operator whose projection
onto the F-variables approximates S;l, a spectrally equivalent surro-

gate for which is provided by Aj?fl.

We quantified these notions to provide a metric of quality for each compo-
nent presented in Table |I) and in such a way that the metrics determine a
robust convergence bound on the two-grid iteration.

The heuristics we presented for the AMG components were more or
less directly inspired by the theoretical measures of component quality
of Table[] In each case, finding the best component is an optimization
problem involving the quality measure, and tractable substitute problems
were found by approximating these measures (using bounds, substitute
norms, etc.). For interpolation, the existing energy-minimizing approach
of Wan, Chan, and Smith [14] fit into this framework. We augmented it
with a heavyweight method for finding an optimal support, which may not
be suitable for methods for which setup time is important. In contrast, the
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coarsening procedure we presented, based on Gershgorin discs, is novel but
also simple, much simpler than compatible-relaxation-based approaches;
but like those it is based on optimizing a theoretical notion of coarsening
quality (related, but different in our framework). Indeed, our procedure
produces a coarsening that satisfies a concrete bound on our coarsening
quality metric.

The strongest evidence for the soundness of our approach is in our
numerical results. Specifically, our heuristics were able to produce AMG
hierarchies achieving convergence rates remarkably close to the target rate,
an input parameter to the heuristics. For the 2D example with 6 levels
(Table , the achieved contraction factors were 0.31 for the target 0.3 and
0.062 for the target 0.05.

The solver portion of the presented AMG algorithm was implemented
in the Nek5000 spectral element code, for use in a highly parallel setting
with a very small number of degrees of freedom per processor—that is,
as the “global coarse solve.” In this context, the communication involved
in the matrix vector products completely dominates the solve time. The
general-purpose communication library used for this purpose had to be
rewritten (with Paul Fischer, see |9]) to handle the patterns involved in
the AMG matrix vector products efficiently. This component was critical
to the AMG solver’s success. An initial version that used only pairwise
exchanges actually performed worse than the direct solver, whereas the
final version with the optimized communication kernel performed almost
50 times faster.
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